66,00 $
66,00 $
66.0
CAD
66,00 $
Cette combinaison n'existe pas.
Ajouter au panier
Non échangeable
Non remboursable
Thermomètre pour processus de stérilisation
Le thermomètre pour le processus de stérilisation est utilisé pour calibrer la température des dispositifs de lecture d'indicateur biologique.
/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHYAdgDASIAAhEBAxEB/8QAHAABAAEFAQEAAAAAAAAAAAAAAAQBAwUGBwII/8QAPRABAAIBAgQEAwUGAwgDAAAAAAECAwQRBRIhMQZBYXEHE1EiMlKBkRQjQmJyoTOxwQgVJFOC0fDxY5Lh/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAIBAwQF/8QAIREBAQACAgICAwEAAAAAAAAAAAECEQMhEjEEQRMiUXH/2gAMAwEAAhEDEQA/AO/gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbgBubgBubgBubgAAAAAAAAAAAAAAAAAAAAAAAAAAAAE9hSY3BE1PEtNpJ5c2StbT5Ic+ItFEx9q0+yXrOG4dZH7ysc0drebXtX4dzYt7Yvt19O4Mzi49ockzvk5f6pSqcQ0uTpTPSfzaPk0WXH0yUvX3ha+VmrG9L9fSQdFreto3i0T7K7udRn1uOel7fqk4uOcRw7ROW23rAN8lXdp2LxVqa7c9K2903F4qpb/Fxcsfy9QbJ5qsPi8R6C+0Te1feEvHxXRZPu6im/0mQTR4rkpeu9bRMekvW4KhupuCopuTOwKim6u/QAFNwVFN1OYCyzn1OLS4rZM1646VjebWnpCzxTiWn4Vw7NrdTeK4sVd7Wl86+K/iFq+P8QvGPLbHpa2nkpE7b+4O438a8GrmmldTF9v4qz0TMPibhWWu/wC1Y6x3mbS+Y6cXvE77zv7902NflikTmyWibR9mu7rx8Vz3fUnupuWn0vh41w7UdMOsx2n0lOpet6xatomJ7TD5lw+I40OK14zzXaOs83ditZ8V+M47cmj1NqxHSJid3PKYy9Nm/t9YR18ld9umz5U03xj8Vaaa1nV/M6b/AGoj/szmj+PfGMW0Z9JhyR5zNpY19Ib+XVXfZxHRf7QOlvtGr0E19aby2LSfG/wvniPm2zYp/mrER/mDpkdlWm6T4neFNX93iuGsz5WtESzOm8U8D1e3yOJ6e8z2iLgzItYtRhzV3x5K2j6xL3zRPadwehTmg36dAVHnmV36AqPPNCu4Kim5vAKgAAAAAAAAAAAAAAAKefZV5m0VnqDzNKX6zWs+8brOTh+my/exR+XRIi9fqRaPKQYzLwPS3+7E1n9UPL4arO/y8vX1hsE9zbcGo5fDmprE7RW0IWTguppvvhv+Ubt7U2ie8f2Bzu+ivSesWj3h5jFenaevvs6HOHHb72Os+9YRsvC9Jl+9ijr9J2Bo9M+oxz0vk/8AtKTj4vrMXbLbf1hsmTw9pbfcma/3RM3hq3L+7yRafpMbAg4vEuqp9/ltH6JuLxTE7fMxRHtKFk8P6qu++Os+0oWXhGau++HJHrETINlx+I9Fb702rM/WEzHxXRZI6Z6e0y0O+jtWetrV91IwZaTvE7/mDo1M+LJ1petvaXvfp02lzqMuoxx0taPaZXsXFtVp5jbJb/qncHQPdSZ9GnYvE2qr0vaLflDAeNviZk4Bwqvycdf2nLM1pMzvt26/3B1DePKe63kyUxxvktFY+sy+XcXxI41nzTe+rtMzO87Ts2Xh3irVZ8N8+r1N5rWszETb0Be+M/jOM+qpwTRZv3WOObLNZ6WntyuPxk+1M7zvPV64pxG/E+JZ9XeZm2W82nf1RaW5pisT132bO+j0zfDqViltTl+7Xtv9UbNrr5LWva0xWeu30Xdfl+Ro8eCs7TMbywWrz8tfl1nrL1c98MZx4/7UY93dWdZrL57zHPPJHluj0j7UPL3TvP6PGtIpPNvL3tH0eaxtEfR63+rRSaRKnLG/Td62Iid9o6yDzG9Z3i9o9l6ms1WOd8eoy1n+W8wufsGp5eaMdpj0hatp81O+O0e8GxOweI+Naad8Wvz198lp/wBWY0vxL8T6OY+XxDJO31jf/NqkxMR1339gHStH8cfE+CYjNkplrHlaIj/KGw6L/aE1Vdo1XDcNvrMXn/s4pywpNaz02iAfRui+PfB8m37VpcmP+iJn/NsWi+MPhTWREftOTHM/jrFf9XyhyV9d/QilonpeYB9nabxt4c1cR8vi+l3+k5I3/wA2UwcU0Go2+Tq8WTf8Nol8Q1zZ8cxNMton0tsl4eOcV08749Xmrt+HJaAfb0TExvWd9/OCI6x9XxzoviB4h0W049fmtMfivNo/u2LRfGzxLptq5M9LV/mpH/YH1OPnnSfH/XU2jPpseWfPry/6Nh0Xx40mXl/adFXHWfOt5n/QHZRz3SfGDw1qIiMmXNS0/wDx9P13bDoPGnBOJUi+m1lZifxTEf6g2A2RKcQ0uT/D1OK2/wBLQZeIabTzEZdRjpM9otaIJLb0JgjYNZg1NZnDmpkiO81tEr3NO/oXr2PY8zMkW3mYB6AAAAAAUmsT3VAWrYont0WrYbx1iUoBDi2Wnd7jUWjvCRPZTlrPeIBbjUVmOvR7jLWe0w8zhpae2zx+zbR0tsC/FontJPdGnDkr1iynNlr3jf8AIErqpKxGomO9XqNRSe+4Lyk1i3eIn3h5jJWe0vcTE9pBZvpcF4mLYqT/ANMIuTg+jyb745j2nZkJhUGDy+HcVp3x3tX36oeXw3ljfktW3vtDaAGk5uA6mnfFEx/L1cY+LWg1OPienm+O9cXLtXesxG+0Pp1rfivwpofFOjjDqoiL03ml4jrX/wA2B8maDSXmY2+uzN8T/aNJwq1omYpFem3rMOkaz4Tazh/Nk09q5sdf1/Rrfi/hc6XwrMXpNclbbW3jbzqDlUWjqk6GOfVY/pusRWeaYS9BTbU2mfKN4dOKbzkrMvSvEs031MxvtFejDXtzXmWR1czObJP1ljJn7UnLl5Z21kn6xRkuDcP/AN466uCZ2rtzWn0hjo7sjwrW34fqoz44i3lMejOPx8pcvTbvXTa9V4X0d9NMYLWpkr5zaZ3avl0eXTZbY712mv16tpweIdNqscxF+S0d6y13iuvrqtVEY53rG8TMeb3/ACOPh8PPG/454XKXVQY6dIhf0eKc2qpWPqsb7MvwLBNs03mO3SHzL1HVtfDdB8+Yia9GZt4dx3rG9I/OF/gWCIrW2zYorG/WPJ5c87L0m1oet8OaTFMRkrWu/psx1/CmnyzPy+v9NnRdXosGqxzGWkTFesS1fTzXBm1OTH/h03iv9l4ZZWG2pZvB+Su81m0e6Bl8NarH937TftPoNVxGkZceW1ZnrtLLaThNq4+XUREz9VXks9m3IMnB9ZjjrjmfZGtpc2OftY7/AKS6/g02k1uTJStdppblWsvB9HfNOGJrN5jfbbdk5v7G7chmkxP3Zj3OsOq5vCmO0dMVNp9GheI9Jj0XE7afHWK8tY32dMeTHK6jdsP6kxE94iSeosUmsTv0jZSKV26zaPaXo3B6xWmmTpe223beW08K4lfRaDHGPJas2+1O0tXxV3i9/wDphLm961rERPLAN50HiTWXzVpTU3rafpaWT4h4gz1x1jJntbJMdOa8ztDUPDWGbZMue++1Z5Y39Y7oPE+JXza7JNZ+zWdo/J7cJ+Li8/u+nK/tlp0LhfjrV8Nry4MnLE99+u7YtP8AFjX12jJyWrH8sOJ11l9o6r1dbMbfamHjt3dusfQ3CfibfX6muGNJGS095idtv7Oh6PVU1enjNTpv3j6S+YeF8UrwvRUil/8AiMlua9t+sV36O1+AvE2n4lpY01rxGasdI37+rBvm48eXd7jsAAAAAAAABJsAAAKbGyoDzNYnyh5nDSfJcAR501fKXmcN69rJRuCL+9p6x6qxntHeqRspNaz3gFuuorPeNnuMtJ7TCk4aTHWIW508bbxO0gvxaJ7SpMbz2R5w5K/dtKk3zU8twSOXbvPX6udfF3hGLN4K1mpx44i2OKzMxHfe1Yb7GrmI+1Xf2YfxNXHxPw7rdFau/wAzFPTv1iYmP7wD4/mn2l/R9M0z6L2t0ttLqb4sleW9bcsxP1W9NX97Wfqviv7xmXpY1FN5tvHViMlZraYbBmpva0MLrcfLkifJmcsysMfSPXrCfotNbVZq4YtFbW7e6HSszsmYMltPmpkpO1qzExvCY1KtwTUc9vk8t6x3nfl6+0o2o0eTS2iuWsVtP0lMni2onNiyxNa8lublrG0TPqi6nUW1Wa+e8RFrTvMVNi1t2bXwHT8uGm8dbTu1SNuaJmZmI26No4VxvR4Ix1y71ivROW9DpfC8MUwVnbrsu8T186HT1tEb2tO0QxnDPEPC8+OKY9XX2no8cbzUvnxZK3rlx1jmiK2iery+N8u0LlcPEcuSctc0/LtPWu/aHjW6PBptLXDN5jJk6xXfraU/hfEsWpw1pFbUtXvWzF6vPGbjfNlty1xzy1mVS3ehf4VxH5Fo02TDakWnaLT2ZzV2tGiy2xdbRXeuzXtbeup4lp8eGYmtI5pmPNsmKsfIrE9fs9eic/qjXuDZMOnre2S8fMmZm1Znrv8AR74Phtn12bUXiYmbdN48nnjfD9No8cZ8UTGS1ukbslpr2poa5piteWu9piNt4blZrcGQvyUxzee1azMuEcb1VtXxjVZZ/wCZaKz6b9HV+N+IceHg+pmcdqTalq1tPbeY6OMzM2vNpneZnuvgxs7qsTz9GV0fAdXrMMZaxFa2+7zebF1tFb1tPWIneYdA4dqMefQYrY7RtFYiYie0vp/E4ceTKy/SOTKydNE1ei1GiyzjzUmsx+iPN9on+7dPEFceTQ2tMRzV7S06uLnw2v5R5I+Twfiy1PVVhluJGirWb4fmfdmeaW2Ri4dmx12vXt1js02Lxjt0mZiOkJGHUWyZK44md7TtDzyb6Vf63LDWmn0t8eLpbJ9mJ9fJiM/A8sTNtuaZ6z5K6/VW0+DFWLTWekx+S1h45qaxtN+aPV6/k5aswnqRzw/qxfheWu+9JhHvprYqzaYmNvrDN4+PRbpkpEx6IHF+K49Ri5MdZrt3383kdEfDntaJva079v07Nm8Ocfy8N12PNjyTWa2iek+X0aNi1XNXlidl+NdfTzW9evWNwfZnAuK4+NcI0+tpMfbrHNH0nzZWO0OO/BvxNTPpJ4dkvM2tabU38t//AE7FHYFQAAAAAAAAAAAAAAADYAAAAAFNus/RUBHvp6WmZjpLG6zRXrjtt9qJ+jMy8zXedtugPn7x74Jv+15OI6XFNq3mbXrWO0/VzidHbT5YtNLViJ84fXOp0eK+9bUia27xLUeM+B+Fa6tpnTVraesTWCXVlHzhq8M0tF/4bebHavSzlrvEbzDtet+Hdfl2x1rzU2+zG3WGo634f8Q09p+VSbVj0XyWZXbJNObRp5rWImJiYOS0ef6ts1Ph3X6edsmntMf0sbl4fak/bxWrMeiGsHtaO8b+ynNt3jZk76SkeixOn6zEWgESJifopv1SL6WYjea7rU4LR5W2B5jff/8AUjDr9Vp9vk570/plH5bRPTZSYtHWazMejNT+DNaTxVxXSXi0ai2SY/HO6dfxjfVTFtXpcdrT3tSNp/u1bmjv2PXfuy4z2zTedH4r0FazXkyYbdota28R+jc9D4s4TqMUVjW054jbad3FOsb/AEImYjp03RlxSmnb9dTDxK2HLi1OO0Un7vNHXqmZ5+Roq1ilb03iL79Y5fNwrFqM2G0Wx5LVmPOJZLD4p4xhryftuW2P8Np6Od4brUp4tz8ecR03+5Memw3rM5LRO0dNuWXNdp3ndN4jxLNxK9L5q1ia/TszXDcfCZ0NI1N8UzE81uk89vrET22d8MfGabOmsbT3mOy7pOJanh1pnFaeS3es9m0avw/oJ1ETiybYr1nLSYmN5rMb8vvEI9/C3zscZ9NkmuKa1mvzO/V0xzywu8b2yyX2wet4vqNdHLP2Y84hZra1NNFI6xa3WUviPDb8Py/KyZKzkr0tWI619JR821IpWPw80x6tz5MuS7yJJPSLzd58t0jhUTbiWO09YrPMsZaxWsbJnBK/8Vedv4VcM3nIzK9Vf43qJtqq0/DGzGxmtHbdf4nbn1+Sf/OyFMyc98uS0xmpEqNTasbzMqZ8kzpuae9pRLWmY28kvV4+XDirH4d3JSHS3LaOqZ/i05I8+3uhcs7ztHVPwY7ctbzG0xMbfqDrvwex10+upF43tO0Tv5Po6OkPnj4ZY7Trcd+Wd5mN/d9Dx2AAAAAAAAAAAAAAAAAAAAAAAAAA2B5mlbd4Wraelu8L+wCBfh1Lb9kTLwmt4n7ESzWxINU1Hh7FkiYtgrMezB6zwVoc8TE6eu/s6NtvG09XicNLTvNYBxnX/DPS5d5x0ms+kNY13wvz1mZxWnp6Poi+jxX36beyPk4XjtHTb9AfL2r8DcU0u8xjtaI9GG1HB9dg3jJp7e+z6sy8EpeJiaRaPZjNV4Y02WJi+Cv6A+VsmntTpfHaPyWZwUntPLL6P1vgHQZ+aZwViZ89msa/4XYLzM4t4n2BxK2ntv06w8WwTHekfk6VrfhlrcUz8reYa/q/B/FdNvvhtaI9AahOOYn71oOWY84lmM/DdVgmYyYLR+SHbBWv3qWr7ggzNo71Vi3rskzhrtvFtni2G22+8TALRH0jo9Ti2nrX9Hmade8wC9TUZcdq2rktE1neNp7L9uK6zJNJyZ7W5bc1Y8t0HltHnEm87dp9wS9Rq82t1U5s95te1t5mVjJeMmovMdpt09jDmpjyc07TtHZ5w1mbVifLrILs44t3hkOEYa0nJaI677f2Rdk/hcfYyf1f6O/x+84nP1WM1OOL5rW85lGnBMQnXj95Pu8TVyyu7a2TpAjDM5K1mOkzDI6vDEzWv4a7KY6b5qf1Qk6mP30x7Jah009a+UbpdcE2rWsR/FH+alKRaYZvhmk+ZeJmOkSDqfwy0UzqsfSdoneXbo7ObfDDFivo8mXHWZiv2Ytt0383SI7QCoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACioCk9VJrE94egFm2Cl+9YWb6DFf/0mAMTk4TS0TtET+SBqOA47xtOGLfk2XZSewND1fhHR5onn09Z/Jr+t+HWgz83Lh5d/pDrU0raOtY/Ravpcd/4Y3BwPX/Cuk7zi3iWs674ba/BM/LrNoh9N34bjt22/RDy8Hrb+GJ/IHyhq/CnFdNM74bTEejGZNDqcMzGTDbf1h9Yajw9hvExbDE+9WF1vgrRZ9+bT13/pB8wzSsfepNZ9nj5dZ7Wd913wz0Wbflpy+0NX1/wsvXecMz6A5T8q1Z3jaXuldrb7dW3634f8T0szNK2tDB6jgHE9NvzYbdPQEHdN4Zba16/Wd/7IGTFqcc/bxWjb0e9Bnmuq2tvWJj+7rwZazlqcvRfeMkxP1lTbd51OWtNTaJnvKkZKT2lGXuqi9p682qxx/NCTqqT+0zC3oo5tVi2/FDLavSTXVbbd4iUiHpdPNrViIb1wDwlreLUimmry2tMb2+kbrfhfwzn4hmptjmKd5tPaHbuBcIxcO01aY6xFto5rRG24Mh4b4Hi8P8GwaHHtzVje9vxWmI3n+zNRG0LOK3SKyvgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgApMKgKbSrsAKTET3iJW7YKW71hdARL6HHeO20o2ThVbR02n8mUJBrubglbb70iY+mzF6nw1psu8WwV/RuzxNK27xEg5frfAmg1G8zgrHtDWdb8LtNe02xVms+zuV9LjtHWsI9+HUtEzAPnDiXwv1PNvTrMebWNX4F4npZnbHaYj6Q+rMvCazWd6RMIOXgmLJvE44n8gfKWn4Vr9FqazkxWjltE7zDdsWhvrdXp5x45tM1rFujtGXwdpNRtN8NdvZO4f4S0GitE0xRv9dgQvDnC/kaLFWaVrtERO0bNmx05a7REQu49NXHWK1iIiF2MX1BbpXe0JMdnmKRD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsAAbBuBsptE94VgB55a/SFYrEdlQDY2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH/9k=